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Abstract— We present FORGE, a method that enables sim-
to-real transfer of contact-rich manipulation policies in the
presence of significant pose uncertainty. FORGE combines
a force threshold mechanism with a dynamics randomization
scheme during policy learning in simulation, to enable the
robust transfer of the learned policies to the real robot.
At deployment, FORGE policies, conditioned on a maximum
allowable force, adaptively perform contact-rich tasks while
respecting the specified force threshold, regardless of the
controller gains. Additionally, FORGE autonomously predicts a
termination action once the task has succeeded. We demonstrate
that FORGE can be used to learn a variety of robust contact-
rich policies, enabling multi-stage assembly of a planetary gear
system, which requires success across three assembly tasks:
nut-threading, insertion, and gear meshing. Project website:
https://noseworm.github.io/forge/

I. INTRODUCTION

We are interested in developing sim-to-real techniques for
learning assembly primitives (e.g., low-clearance insertion
or nut-threading). Over the past decade, work in simulation
and sim-to-real techniques has led to advances in challenging
areas such as dexterous manipulation and legged locomotion
[1], [2], [3], [4]. However, similar results have only recently
been achieved for robotic assembly, which requires efficient
and accurate simulation of both the robot and the detailed,
low-clearance parts [5], [6], [7], [8], [9], [10].

Even with these advances, successfully deploying sim-to-
real policies for assembly tasks remains challenging. Pre-
vious approaches typically only consider small amounts of
perceptual noise relative to part size. This assumption aligns
with industrial-style robot workcells where uncertainty is
typically engineered away. Strategies to deal with uncertainty
include careful mechanical design of fixtures and adapters,
extensive calibration processes, and the use of high-precision
sensing. As a result, the time and money required to set
up a workcell with different parts, poses, and tasks can be
prohibitive for small-scale enterprises, or in less-structured
environments. We aim to develop control methods that are
robust to higher levels of pose estimation error, which is
unavoidable in less structured environments.

When there is pose uncertainty, behaviours that search for
and rely on contact can be used to ensure success [11], [12].
However, the required contact between the parts can lead to
undesirable outcomes if the force is too high. Parts can slip
or become damaged, making the task difficult or impossible
to complete. Previous heuristic approaches, such as spiral
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Fig. 1. FORGE uses force feedback to learn search behaviours for
contact-rich tasks with pose estimation uncertainty. It combines dynamics
randomization, a force threshold, and early termination for robust sim-to-
real transfer. The resulting policies are safe and efficient (bottom) compared
to aggressive baseline policies that cause parts to slip (top).

search [11], [13], can limit the applied force but are task-
specific and can be inefficient. RL offers a general paradigm
for developing more flexible search behaviours. However,
the sim-to-real gap makes it difficult to transfer policies
learned in simulation to the real world. In particular, it is
challenging to simulate a similar contact distribution to what
the real robot would experience. Even if the simulator has
an accurate robot model (itself a time-consuming calibration
procedure), it is difficult to know a priori the material and
inertial properties of the parts the robot will interact with.

In this work, we propose FORGE: a framework for
developing sim-to-real policies that safely and efficiently
perform assembly tasks in the presence of significant pose
uncertainty. FORGE trains policies in simulation that are
robust to a wide range of contact interactions. Additionally,
policies are trained without precise knowledge of part poses,
leading to emergent search behaviours.

FORGE has two complementary components to ensure
policies are robust to contact. First, we propose to con-
dition policies on a force threshold that should not be
exceeded during task execution. Second, policies are trained
to maintain this threshold under a wide range of dynamics
randomizations (we randomize robot, controller, and part
properties). The dynamics randomization ensures that the
search behaviour is robust to simulator mis-specification
and has the added benefit that the resulting policies can be
deployed without extensive controller tuning.

As assembly policies become more performant, we em-
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phasize the importance of reporting metrics beyond success
rate, such as mean force or time to success. Standard practice
in sim-to-real assembly is to execute policies for a fixed
duration [7]. However, due to task variation, this will often
lead to premature termination or leave a robot “waiting” after
the task is finished. Instead, the policy can determine when
to terminate. This is itself a difficult task that can benefit
from contact (e.g., a successfully inserted peg cannot move
laterally). FORGE proposes a method for early termination
that expands the action space so that the policy learns to
predict task success. We show that early termination, also
trained in simulation, robustly transfers to the real world.

In summary, our contributions are:
1) A method to specify maximum allowable contact-

force during policy execution. This results in policies
that exhibit safe search behaviour even with significant
levels of pose estimation error (up to 5mm).

2) A dynamics randomization scheme that enables ro-
bust sim-to-real transfer, and minimizes the need to
tune controller gains.

3) A method for early termination prediction that
allows efficient policy execution.

4) A demonstration of multi-part assembly of a plane-
tary gearbox requiring a diverse set of skills, including
the challenging task of fastening nuts and bolts.

Results are shown over > 500 real-world trials and
multiple tasks. We plan to release the code with the paper.

II. RL FOR CONTACT-RICH ASSEMBLY

We want to learn policies for tasks with tight tolerances
and detailed geometry. We first describe the problem formu-
lation before introducing FORGE in the next section.

A. Assembly Tasks

Each task involves mating two parts: one held in the
gripper and another fixed to the workspace. We consider all
three tasks from Factory [5] and demonstrate the first sim-
to-real transfer for threading a small M16 nut (see Fig. 2).

Peg Insertion: A small round peg with 8mm diameter
needs to be inserted into a corresponding socket with 0.5mm
diametrical clearance. There is position uncertainty such that
a successful search behaviour requires lateral exploration.

Gear Meshing: Gears need to be inserted onto pegs with
0.5mm clearance. Other gears are present and the teeth of
adjacent gears must be aligned for successful meshing. In
addition to lateral exploration, rotational exploration may be
necessary to mesh the teeth.

Nut Threading: Instead of fully lowering a nut onto
a bolt as in Factory, we define the nut threading task as
successfully threading the nut such that it cannot be lifted
by a vertical motion (we find lowering by a quarter-thread
is sufficient). Because our robot has joint limits, and to
prevent the need to regrasp, we assume the nut and bolt are
initially oriented1 such that success can be achieved with a

1We leave the more challenging, yet realistic, scenario involving com-
pletely unobserved thread orientation to future work.

single revolution of the wrist joint. We consider nuts with
a relatively small size (M16) compared to previous sim-to-
real work (M48) [14]. A successful search behaviour will
resolve lateral uncertainty and place the nut on the bolt before
rotating the wrist (otherwise the threads may not mesh).

B. POMDP Formulation

We formulate our problem as a Partially Observable
Markov Decision Process (POMDP) [15], [16] to re-
flect the partial observability of most contact-rich ma-
nipulation setups. A POMDP is defined by the tuple:
(S,A,Ω, T,O,R, γ). The goal is to learn a parameterized
policy, πθ(at|o1, . . . , ot), that maximizes the expected return:

J(πθ) = Eτ∼p(τ,|πθ,Ψ)[Σ
∞
t=0γ

trt] (1)

where τ = (s0, a0, o0, s1, a1, o1, . . .) is the trajectory of
states, actions, and observations resulting from the robot fol-
lowing policy πθ. Below, we further specify the components
of the POMDP for contact-rich tasks.

States (S): A state, st ∈ S consists of the pose and
velocities of the end-effector (EE), fixed part, and held
part: pee, pfixed, pheld ∈ SE(3) and vee, vheld ∈ R6.2

We also include the contact force experienced by the end-
effector, F ee ∈ R3, and time-invariant information about the
dynamics properties of the robot, controller, and parts (e.g.,
mass or joint-friction): Ψ = (ψrobot, ψcontrol, ψparts).

Observations (Ω): It is difficult to accurately estimate
the full state for contact-rich manipulation. Instead, all our
policies use the following observations:

• Noisy EE pose and velocity: p̂ee ∈ SE(3), v̂ee ∈ R6

• Estimated contact force: F̂ ee ∈ R3

• Noisy estimate of the fixed part’s pose: p̂fixed ∈ SE(3)

We do not include pose or velocity of the held part because
it can move in the gripper and be difficult to track without
tactile sensing. Likewise, we do not observe Ψ, but include
the previous action, at−1, to help infer unknown dynamics.

Actions (A): Control targets for a task-space impedance
controller [17], [7]. As in previous work [5], [7], we assume
all parts are in an upright orientation. Thus it is sufficient
for the policy to only have control authority over the
(x, y, z, yaw)-dimensions: at ∈ A = R4.

Transition Function (T ): T determines the next state
and is parameterized by the dynamics parameters, Ψ: TΨ :
S × A → S . TΨ is often specified using a simulator (in
our case IsaacGym [18]) with the corresponding set of
simulation parameters, Ψsim. The sim-to-real gap comes
from the mismatch between Ψsim and Ψreal.

Observation Function (O): The observation function
generates noisy observations from state: O : S × A → Ω.
The position of the fixed part is assumed to have up to 5mm
error. Independent Gaussian noise is added to each of the
other observations at every timestep (except velocity, where
positional noise is propagated through finite differencing).
Noise values can be found on the website.

2vheld may be different from vee if the part slips in the gripper.



Fig. 2. FORGE is evaluated on three tasks proposed in the Factory work [5]: Peg Insertion, Gear Meshing, and Nut Threading. Each task is trained
solely in simulation (top) and transferred directly to the real robot (bottom).

Reward (R): The reward function, R : S × A →
R, uses a keypoint formulation as its main component:
Rkp(p

fixed, pheldt ). The target keypoints, ktarg, represent the
desired position of the held part, while kheldt represent its
current position. We modify the keypoint reward from previ-
ous work [5], [19] to account for small, threaded geometries
(see the website for more details). We also add two discrete
bonus rewards that are given when important phases of the
tasks are reached: once the held part is centered on top of
the fixed part and once the task is successful:

Rbonus(p
fixed, pheldt ) = Iplace + Isuccess. (2)

The relative z-position of bottom of the held part to the
top of the fixed part is used to check each condition (see
website ). We found the bonuses led to more robust learning
when there is significant pose uncertainty.

III. FORGE: ROBUST SEARCH UNDER UNCERTAINTY

FORGE uses on-policy RL to learn exploratory behaviours
in simulation. A force threshold (Section III-A) and dynamics
randomization (Section III-B) are introduced to achieve
robust search behaviours. FORGE also introduces an early
termination procedure (Section III-C) for efficient execution.

A. Force Threshold

During policy execution, excessive force can cause parts
to slip or become damaged (e.g., electronic components with
fragile pins). Although it may be possible to recover from
small amounts of slip with the right sensors (e.g., wrist
camera or tactile), we prefer to avoid these scenarios.

To develop safe policies, we propose to condition the
policy on a force threshold, Fth: π(a|o, Fth). During training,
the policy is penalized if the contact force, F ee

t , experienced
by the arm exceeds the threshold. Concretely, we add an
additional term to the reward function:

Rcontact pen(F
ee
t ) = −β ∗max(0, ||F ee

t || − Fth). (3)
In simulation, the true contact force can be measured. Note

that this penalty can be used during training whether the
policy has access to the force observation or not.

B. Dynamics Randomization

To successfully deploy policies trained in simulation, it is
important that the trajectory distribution experienced during
training is similar to what it would be when deployed:

p(τ real|πθ,Ψreal) ≈ p(τsim|πθ,Ψsim). The difference be-
tween these distributions is usually referred to as the sim-
to-real gap. To gain insight into why minimizing the gap
is important, specifically for contact-rich tasks, we can look
more deeply into how trajectories are sampled:

τ ∼ p(τ |π,Ψ) =p(s0)

T∏
t=1

[
π(at|o1:t)

p(ot|st, at−1,Ψ)p(st|st−1, at−1,Ψ)
]
.

(4)

From this equation, we see the dynamics parameters can
impact both the next-state and observation distributions. For
the same action, different dynamics parameters can lead to
parts being in different locations. Further, similar actions may
lead to different observed contact forces.

The sim-to-real gap is usually handled by (1) system
identification (Sys-ID) [20] or (2) dynamics randomization
(DR) [21], [10]. The goal of Sys-ID is to tune Ψsim to be
close to Ψreal. This itself is a complicated tuning procedure
that may need to be redone for every new set of parts.
Instead, we follow the DR approach which learns policies
that are robust to a wide range of dynamics parameters.
Concretely, we optimize a version of Eq. 1 where:

τ ∼ pDR(τ |πθ) = ∫ p(τ |πθ,Ψ)p(Ψ)dΨ. (5)

The integral is approximated with Monte Carlo samples
from a randomization distribution (see website for values).
The next subsections describe the variables that are random-
ized (at the beginning of each episode).

Controller Randomization: The controller has a large
impact on what force will be experienced. This work uses
impedance-control where applied forces are computed as:

ptargt = clip(combine(at, p
fixed), λ), (6)

F targ = kp(p
targ
t − peet )− kdv

ee
t . (7)

First, the policy outputs a relative-pose, at, which is applied
to the fixed part’s pose to get an absolute target pose,
ptargt . This pose is clipped by an action scale, λ, to ensure
that the target is not too far from the EE’s current pose.
As in previous work, we use critically damped gains to
ensure stable controllers: kd = 2

√
kp [10], [22], [23]. The

controller thus depends on two parameters which govern how
much force can be commanded: λ× kp. We randomize both
quantities so that the range of maximum commandable forces



is in [6.4, 20.0]N . Note that the control parameters are not
included in the observations, so the policy must adjust its
behavior based on force measurements. This reduces the pol-
icy’s dependence on a particular controller implementation.

Controller tuning [7] or optimization [23] is a costly and
often complex procedure. Randomization has the additional
benefit that the policy is robust to a range of control
parameters, greatly simplifying deployment.

Part Friction Randomization: As parts slide against each
other, the material friction determines how much lateral force
the sensor will experience. To ensure policies can work
across a range of materials, we randomize part friction.

Robot Dynamics Randomization: Due to phenomena
such as joint friction, the applied force may be smaller
than the commanded force. We implement a simple way
to account for this: inducing a randomized dead-zone in
simulation. Each episode, a dead-zone is selected for each
dimension, FDZ

i , where commanded forces below this value
are clamped to zero: |F applied

i | = max(0, |F targ
i | − FDZ

i ).
This enables the policy to increase its target which can help
apply more force when needed or reduce steady-state error.

These randomizations lead to a policy that is robust to a
wide range of dynamics parameters. Combined with the force
threshold, the policy can modulate its actions to achieve safe
interaction. For example, with higher gains, the policy will
output smaller actions to limit the contact force.

C. Early Termination

Ideally, we want the policy to terminate as soon as the task
has succeeded and no sooner. Although success is clearly
defined in simulation where we have access to the positions
of each part, it is much more difficult to reliably predict
success in the real world [24]. Consider the nut-threading
task, where the distance between a successfully threaded nut
and a loose nut is a fraction of a millimeter.

We propose to train a success predictor which can ro-
bustly transfer from sim-to-real and be used to make early
termination decisions. Concretely, we share the weights of
the policy network with the success predictor by expanding
the action space of the policy to include an early termination
action: aET

t ∈ [0, 1]. To train the policy to output the correct
action, we include an early termination reward, RET

t , which
penalizes incorrect success predictions:

RET
t (at, yt) = −|aET

t − yt|, (8)

where yt is the true success label at time t. During training,
episodes are always executed for the maximum length.

At deployment time, a confidence threshold, pterm, can be
used to terminate the episode as soon as the policy believes
it has succeeded: aET

t > pterm. This allows us to behave
efficiently, a desirable property for industrial applications
where it is important to reduce cycle times.

IV. EXPERIMENT SETUP

A. Robot System

For all experiments, we use a Franka Panda robot and
the FrankaPy [25] library for the impedance controller. All

policies send targets to the controller at a rate of 15Hz
while the controller operates at 1000Hz. The Panda has
joint-torque sensing, which is projected to EE-frame force
values when needed by the policy: F̂ ee = J†(q)τext,
where J† is the Jacobian pseudo-inverse and τext are the
estimated external joint torques [26]. Alternatively, a force-
torque sensor can be used to estimate the contact force.

For the majority of our experiments, we calibrate the
poses of each fixed object and artificially add noise. This
allows us to analyze performance under known levels of
pose estimation error. The calibration is done by guiding
the arm to a successful pose for the respective task from
which a nominal initial pose can be backed out. Unless
otherwise reported, our real experiments use the same initial
state randomization as in simulation (see website ).

For our last experiment, we assemble a planetary gear box
(Section V-E) using the perception system from IndustReal
[7] (retrained using data we collected). This model assumes
the z-position of parts are known and uses a Mask-RCNN
model [27] to estimate bounding boxes from which planar
locations can be backed out. The perception errors in this
system are largely caused by extrinsics calibration errors and
minor bounding box prediction errors.

B. Policy Training

Simulator: All policies are trained using the Factory
simulation methods within IsaacGym [5]. In simulation,
we estimate the external contact force experienced by the
end-effector (akin to attaching a force-torque sensor on the
robot, or projection from joint sensing of external torques
as done on Franka robots). Noisy sensor values are used as
policy input, whereas ground-truth sensor values are used
to compute the excessive-force penalty. For all RL, we
use recurrent PPO [28] with asymmetric actor-critic [29]
to handle partial observability. Details on initial state and
observation randomization can be found on the website.

Checkpoint Selection: For all tasks and models, we train
three policies with separate random seeds. For the peg-
insertion and gear-meshing tasks, all policies are deployed
on the real-robot and reported results are averaged across
the three policies. For the nut-threading task, we found that
not all policies transferred reliably to the real world, even
when high success rates are achieved in simulation. As such,
for this task, we report results for the best of the three
checkpoints (determined using 18 test runs each).

Observation and Action Frames: To allow efficient
generalization across the workspace, we assume actions and
observations are defined relative to the tip of the fixed
part. Specifically, the policy outputs a 4D relative transform
from the tip of the fixed part (we assume upright parts).
The control target is computed from the fixed part’s pose
estimate and the relative pose from the policy. The policy
output is bounded, which limits the operational volume of
the end-effector (we allow targets to be up to 5cm away
in all directions). Similar to the action space, all position
observations are relative to the tip of the fixed part.



V. RESULTS AND DISCUSSION

A. Baseline Comparisons

We first compare FORGE to a baseline method that
does not include any FORGE components. Specifically, the
Baseline method was not trained using force observations,
an excessive-force penalty, or dynamics randomization; how-
ever, it was trained with the early termination procedure so
meaningful episode durations could be reported. We also
considered a version of FORGE that does not use force
observations. The questions we seek to answer are: (Q1)
Does FORGE lead to more robust sim-to-real transfer?
(Q2) Does FORGE lead to policies with more desirable
behavioural properties?

We considered one variation of each task from Section
II-A: the 8mm Peg, the Medium Gear (with two abutting
gears), and the M16 Nut. Along with policy success rate,
used to measure robustness for Q1, the following metrics
are reported to answer Q2:

• Duration (s): The average trial length when using an
early termination threshold of pterm = 0.9.

• Fmean, Fmax(N): Forces experienced by the robot.
• Early Term. Precision: The fraction of early-terminated

trials that were actually successful.
• Early Term. Recall: The fraction of successful trials

which were terminated correctly with aET > pterm.
Each reported metric represents 45 trials spread across 5

workspace locations for the fixed part, and 3 pose-estimation
error levels ranging from 0 − 5mm (see Fig. 3). Similar
randomization ranges were used as in simulation except for
the in-hand part randomization where the part was placed
centrally in the gripper. Results are reported in Table I.

One conclusion for Q1 is that FORGE outperformed the
Baseline method for all tasks whether force is included
or excluded from the observation space. This suggests that
the primary benefits of FORGE come from the dynamics
randomization and excessive-force penalty. For FORGE,
comparison to the policy without force observation shows
that although using force sensing was useful for the easier
insertion and gear meshing tasks, it harmed performance for
the nut-threading task. We hypothesize that this is because
nut-threading policies rely more heavily on force observa-
tions in simulation; these policies would therefore be more
sensitive to any sim-to-real gap for this observation modality.

Examining the behavioural metrics for Q2, we notice
that FORGE used less force than the baseline and had
minor improvements in trial duration. During experiments,
we observed FORGE led to gentler interactions between the
parts (see accompanying video). The reduced force produced
by this policy was especially helpful for the M16 Nut which
was more susceptible to slipping than the peg or gear.

B. Noise Analysis

We next aim to answer (Q3): How is policy performance,
in terms of success rate, affected by pose-estimation
error? We use the same trials from the previous section,
but show a breakdown of the results across different error

Fig. 3. Perception Error For each task, we visualize what the different
pose estimation errors look like overlaid on the fixed part.

Fig. 4. Noise Analysis Performance broken down by level of pose error.
Each subplot is a planar representation of the error levels where each ring
corresponds to low (0-1mm), medium (1-2.5mm), and high (2.5-5mm) error.
Success rate, stated in black text, is also represented by the shade of the
corresponding ring. Dots represent x-y noise samples for successful (green)
and failed (red) trials. FORGE results in good performance across tasks
even with high error levels.

levels. During each trial, artificial perception error was added
to the fixed part’s pose (calibrated as described in Section IV-
A3). A third of the trials fell in each of the three considered
error levels (see Fig. 3): Low (0-1mm), Medium (1-2.5mm),
and High (2.5-5mm). We considered 3D position error
by sampling a perturbation vector with a radius uniformly
sampled in the desired error range and a direction uniformly
sampled from the unit-sphere.

Figure 4 visualizes the performance of the baseline policy
vs. FORGE at different noise levels. Each subplot is a 2D
representation of how much x-y error there was for each trial
(z-dimension error not visualized). Each point corresponds
to either a successful (green) or unsuccessful (red) trial.
The color of the ring represents the success rate at the
corresponding error levels (increasing outwards). For the

3Adding artificial noise allows us to better characterize performance
across error level compared to a perception system whose bias and variance
can be difficult to estimate and control.



Episode Force Early Termination
8mm Peg Success Rate ↑ Duration (s) ↓ Fmean (N) ↓ Fmax (N) ↓ Precision ↑ Recall ↑
FORGE 0.84 (0.05) 5.01 (0.17) 5.51 (0.24) 12.84 (0.37) 1.00 (0.0) 1.00 (0.0)

FORGE (No Force) 0.82 (0.06) 7.30 (0.42) 7.09 (0.35) 14.16 (0.39) 0.59 (0.08) 0.81 (0.07)
No FP (400kp) 0.64 (0.07) 6.06 (0.40) 6.94 (0.13) 11.94 (0.24) 0.83 (0.07) 0.92 (0.05)
No FP (600kp) 0.71 (0.07) 5.28 (0.35) 10.66 (0.15) 16.58 (0.32) 0.91 (0.05) 0.97 (0.03)

Baseline 0.64 (0.07) 5.09 (0.30) 11.81 (0.21) 17.93 (0.41) 0.97 (0.03) 1.00 (0.0)
Medium Gear Success Rate ↑ Duration (s) ↓ Fmean (N) ↓ Fmax (N) ↓ Precision ↑ Recall ↑

FORGE 0.98 (0.02) 6.34 (0.42) 7.95 (0.11) 15.10 (0.45) 0.95 (0.03) 1.00 (0.0)
FORGE (No Force) 0.93 (0.04) 9.02 (0.79) 8.49 (0.23) 14.68 (0.39) 0.60 (0.08) 1.00 (0.0)

No FP (400kp) 0.82 (0.06) 6.44 (0.23) 6.52 (0.14) 10.97 (0.24) 1.00 (0.0) 1.00 (0.0)
No FP (600kp) 0.73 (0.07) 6.99 (0.46) 9.48 (0.23) 15.73 (0.30) 0.94 (0.04) 0.97 (0.03)

Baseline 0.69 (0.07) 7.57 (0.50) 11.67 (0.45) 18.29 (0.40) 0.90 (0.05) 0.97 (0.03)
M16 Nut Success Rate ↑ Duration (s) ↓ Fmean (N) ↓ Fmax (N) ↓ Precision ↑ Recall ↑
FORGE 0.44 (0.07) 24.50 (1.35) 6.88 (0.14) 13.34 (0.17) 0.50 (0.11) 1.00 (0.00)

FORGE (No Force) 0.69 (0.07) 13.16 (0.66) 7.78 (0.17) 14.41 (0.28) 1.00 (0.0) 1.00 (0.0)
Baseline 0.20 (0.06) 27.89 (2.22) 7.32 (0.23) 16.73 (0.29) 0.11 (0.10) 1.00 (0.0)

TABLE I
BASELINE COMPARISON FORGE (WITH AND WITHOUT FORCE OBSERVATIONS) IS COMPARED TO BASELINES THAT DO NOT INCLUDE ROBUST

SIM-TO-REAL COMPONENTS. IT IS ADDITIONALLY COMPARED TO ABLATIONS THAT DO NOT USE AN EXCESSIVE-FORCE PENALTY. EVALUATIONS ARE

PERFORMED OVER A TOTAL OF 585 TRIALS ON THE REAL ROBOT (45 PER ROW). STANDARD ERRORS ARE INCLUDED IN PARENTHESES.

Fig. 5. Gains Analysis (90 trials, 8mm Peg) With force sensing (+Force),
FORGE can achieve robust success rates (bottom) across varying controller
gains at deployment time. Even with different gains, force sensing allows
the policy to modulate its actions to achieve low contact forces (top).

M16 Nut task, we include results for the No Force ablation
as this was the most robust policy that used dynamics
randomization and a force threshold.

FORGE achieved high success rates (> 0.8) for all tasks at
low and medium error levels, even for the M16 nut. Although
performance degraded with error > 2.5mm, FORGE still
significantly outperformed the baseline. With high error, the
effects of contact are more pronounced because the robot
may need to search longer before the task is complete.

C. Force Analysis

Next, we investigate how FORGE limits forceful interac-
tions. (Q4) How important is the excessive-force penalty
for safe interactions? (Q5) Can FORGE limit the applied
force without extensive controller tuning?

Excessive-Force Penalty (Q4): In Table I, we compare to
an ablation, No FP, that was trained without the excessive-
force penalty of FORGE (but still used force observations
and dynamics randomization). We used the same evaluation
procedure as for FORGE but deployed with two different
controller gains (we chose values at the lower and middle of
the gain randomization range). Note that ablation results are
not reported for nut-threading as we found that the nut always

slipped out of the gripper. We found that policies deployed
with the lower gains achieved similar average forces to
FORGE while those deployed with higher gains naturally
experienced more force. Both policies had lower success
rates than FORGE which was deployed with controller gains
at the middle of the randomization range.

Gains Robustness (Q5): To measure how robust FORGE
is to controller gains, we performed an additional experiment
where we varied the gains at deployment time and mea-
sured success rate. We compared FORGE and the No Force
ablation to gain insight into how important force sensing
is to limiting applied forces. The experiment was carried
out for the 8mm peg task at a single workspace location,
with medium pose estimation error and limited initial-state
randomization. We considered 5 proportional gain levels
across the randomization range (corresponding to an 8N
range in the maximum force the controller could apply) and
each condition was evaluated 9 times (3 runs per checkpoint).

In Fig. 5 (bottom), we see that FORGE achieves high suc-
cess rates across a wide range of controller gains. However,
performance is less consistent without force observations.
In Fig. 5 (top), we use a box plot to show the spread of
Fmean across the 9 trials of each condition. The dotted line
shows the deployment force-threshold: Fth = 7.5N . We see
that when the force observation was included, contact force
was consistently low across gains. However, without force
observations, the spread of forces across episodes was high,
often exceeding the threshold at higher gains. This highlights
the importance of force sensing to enable the policy to
effectively modulate the contact force.

D. Success Prediction Analysis

To evaluate the early termination procedure, we ask: (Q6)
How much efficiency is gained when the policy deter-
mines when to terminate? (Q7) Does success prediction,
trained in simulation, transfer to the real world?

To answer Q6, we use Delay Time (s) to capture efficiency
(lower values are better). Delay time measures the time



Fig. 6. Success Prediction Analysis Relationship between Delay Time
and Success Rate for two early termination methods (generated by varying
each method’s respective parameter: T or pterm). The Pred Term method
leads to lower delays than the Fixed Term method, especially at higher
success rates. The vertical line shows a 0.8 success rate.

between when success occurred and when the episode was
terminated. We compare the proposed method (Pred Term)
to a standard termination method that stops the policy after a
fixed duration, T (Fixed Term). Each method has a parameter
that can be tuned to produce a different success rate (fraction
of episodes that are successful when terminated). However,
this will introduce a trade-off with delay time:

• Fixed Term (T ): Waiting too long is inefficient while
terminating too early will harm success rates.

• Pred Term (pterm): A high threshold can cause extra
delay while a low threshold can affect success rate.

Fig. 6 is a simulated analysis that shows the relationship
between Delay Time and Success Rate for each method.
Each line was generated by measuring the success rate and
corresponding delay time across a fine discretization of each
method’s termination parameter. These were then sorted by
success rate and plotted.4 As a practitioner, one could choose
a desired success rate and find the resulting delay.

Across all tasks, we see that the Fixed Term method leads
to longer delays, especially at higher success rates (we plot
a vertical line to show the 0.8 success rate). The early
termination action, aET , allows for dynamic episode lengths,
leading to high success rates with smaller delay times.

Finally to answer Q7, results in Table I show that early
termination prediction transferred well to the real world.
While the termination method tended to correctly identify
successes for all models (high and often perfect recall), we
see that precision was best when using force observations
for the gear and peg tasks. This shows the benefit of force
for sensing task completion: when the bottom of the socket
has been reached, or the gear has been fully meshed.

E. Multi-Stage Assembly

To culminate this work, we show that FORGE enables the
multi-stage assembly of a planetary gearbox using a simple
perception system (see Fig. 7 for the initial and final states).
We assume the assembly sequence is known a priori and

4Similar to an ROC plot, but higher areas above the curve are better.

Fig. 7. FORGE policies enable a robot to complete long-horizon tasks
such as assembling a planetary gearbox (from initial state [left] to goal
state [right, enlarged]).

train FORGE policies for Small Gear, Large Gear, and M16
Nut tasks. We additionally introduce a new Ring Insertion
task, which must also be robust to orientation estimation
noise such that the three bolts align with the holes in the
outer ring. Successfully assembling the planetary gearbox
requires executing 8 contact-rich primitives.

We ran 5 trials resulting in the following success rates:
Ring Insertion (5/5), Small Gear (15/15), Large Gear (3/5),
M16 Nut (15/15). Early terminations saved on average
65s in a single trial compared to executing policies for a
fixed duration. Overall, the complete assembly succeeded in
3/5 trials where the failures correspond to the large gear
insertion (which has to align the teeth of three already
inserted small gears). Please see the accompanying video for
a demonstration of the multi-stage assembly and the website
for more experimental details.

VI. RELATED WORK

Assembly tasks typically involve mating parts with tight
clearances and detailed geometries [30], [31]. Various ap-
proaches have been proposed to handle pose uncertainty in
such tasks. Mechanically, remote centers of compliance [32]
or chamfers can mitigate small misalignments. Compliant
control [33] and strategies such as spiral search [11], [34]
have also be used for insertion. These strategies typically
consider low noise levels and are task-specific.

Sim-to-Real Transfer: System identification [20] is of-
ten time-consuming and difficult to apply to contact-rich
tasks. Instead, dynamics randomization randomizes param-
eters such as part friction/stiffness [10], [21], [22], [35],
[36], controller gains [12], [21], or F/T observation scale
[12], [37]. Even with randomization, excessive forces can
occur when deployed. An expert can tune the controller
gains at deployment or choose an action-space that is safe
by design [7], [25], [38]. Gains can also be adapted online
via optimization [23] or an explicit gain-tuning model [37].

Similar to FORGE, other works have proposed to use a
force-threshold [10], [17], [36]. These works have a fixed
threshold during training which is often very large to pri-
marily prevent damage (e.g., 40N ). However, especially with
small parts, slip can occur with much lower contact forces.
Most similar to FORGE, [10] introduces a method to specify
the desired interaction force at deployment time.

Most prior work focus on insertion-style tasks. We show
how the combined application of a force-threshold and dy-
namics randomization can lead to robust sim-to-real transfer



for a range of tasks, including the complicated nut-threading
task. Prior work on sim-to-real for nut-threading [14] focused
on large parts (M48 nuts) that were fixed to the gripper. In
addition, we show these techniques are applicable for sim-
to-real transfer of early termination procedures. Additional
discussion of related works can be found on the website.

Early-Termination: Previous sim-to-real approaches ex-
ecute policies for a fixed duration [7]. Instead, we would
like to terminate once success is achieved. For some tasks,
success can be manually specified from sensor data [39],
[40]. For others, a classifier can be learned from visual
data [41], [42]. However, for contact-rich tasks, visual and
proprioceptive data alone may be insufficient to determine
success [43]. In such cases, the robot can execute actions to
verify success [44]. Previous work learns a separate policy to
check success after task execution [24]. Instead, we jointly
trained a policy to predict success during task execution.

VII. CONCLUSION

In conclusion, we present FORGE, a method to train sim-
to-real policies for robust execution with pose estimation
uncertainty. FORGE uses a force threshold and dynamics
randomization to learn safe exploration behaviours, enabling
successful policy execution with up to 5mm of position
estimation error. In addition, FORGE can predict early ter-
mination, allowing efficient policy execution. In future work,
we plan to investigate torque sensing to help develop more
efficient search strategies. We also believe research in real-
to-sim will help automatically tune simulation models for
robust transfer in complicated tasks such as nut-threading.
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