FORGE: Supplementary Material

I. RELATED WORK
A. Real World Reinforcement Learning

A large body of work focuses on learning assembly
tasks directly on the real-robot. Learning directly on the
robot side-steps the sim-to-real gap by using data (and
contact-interactions) from the same distribution expected at
deployment. These works typically address problem of data
efficiency by leveraging demonstrations [1], [2], [3], [4],
[5] or using model-based approaches [6], [7], [8], [9]. To
ensure excessive forces are not exceeded during training,
these papers typically use control methods designed to be
safe [5], [10], [11].

B. Sim-to-Real Methods

Learning directly in simulation is often preferable for robot
safety, increased task variability, and access to privileged
state. With advancements in RL and parallelizable simulation
[12], [13], [14], [15], there has been much interest in
sim-to-real transfer for complex control problems. Of note
include legged locomotion [16], [17], [18], [19] and in-hand
manipulation [20], [21], [22].

Recent advances in contact-rich simulation has enabled
efficient simulation of assembly tasks [23], [24], [25], [26].
However, as discussed throughout the paper, the key chal-
lenge becomes the sim-to-real gap: how can we safely and
successfully deploy policies that were trained in simulation?

Although system identification is a principled approach to
minimize the sim-to-real gap [27], it is often time-consuming
and difficult to apply to contact-rich tasks [28], [29]. Instead,
many approaches use dynamics randomization: randomizing
parameters such as part friction/stiffness [30], [31], [32],
[33], [34], controller gains [35], [33], or F/T observation
scale [35], [36]. A third class of approaches uses a small
amount of real-robot data to finetune the policies learned in
simulation [31], [37], [38].

Even with dynamics randomization, excessive forces can
occur when deployed on the real-robot. In some work, parts
are fixed to the gripper [32] and slip will not occur. When this
isn’t the case, several methods have been proposed to ensure
safe policy deployment. An expert can tune the controller
gains at deployment time or design the action space in a
way such that all actions are safe [39], [40], [41]. Gains can
also be adapted online via optimization [42] or an explicit
gain-tuning model [36].

Similar to FORGE, other works have proposed to use a
force-threshold [31], [43], [32]. These works have a fixed
threshold during training which is often very large to pri-
marily prevent damage (e.g., 40N). However, especially with

small parts, slip can occur with much lower contact forces.
Most similar to FORGE, [31] introduces a method to specify
the desired interaction force at deployment time.

Most prior work focus on insertion-style tasks. We show
how the combined application of a force-threshold and dy-
namics randomization can lead to robust sim-to-real transfer
for a range of tasks, including the complicated nut-threading
task. Prior work on sim-to-real for nut-threading [44] focused
on large parts (M 48 nuts) that were fixed to the gripper. In
addition, we show these techniques are applicable for sim-
to-real transfer of early termination procedures.

II. RANDOMIZATION

All randomization ranges are reported in Table In
addition to the dynamics randomization described in the
text, we also randomize the initial state distribution and
observation noise.

Initial State Randomization: At the start of an episode,
we randomize the position of the fixed part, the relative pose
of the hand above the fixed part, and the relative position of
the held part in the gripper (where the default position has the
top of the held part aligned with the bottom of the gripper).

Observation Randomization: In simulation, the position
of the fixed asset is randomized once per episode by adding
Gaussian noise. Independent Gaussian noise is added to
each observation at every timestep (except velocity, where
positional noise is propagated through finite differencing).

III. REWARD

A. Keypoint Reward

Here we describe the keypoint reward in more details.
Keypoint distance is calculated as: dfp (ppetd pfized) =
||keld — ktarg||. We use a logistic kernel as in [20] to trans-
form keypoint distances into a bounded reward: K p(dip) =
(€79 + b+ )1, The kernel can be tuned to be sensitive
to distances at different scales using parameters a and b (see
Table [I).

Using a single kernel parameterization was not sufficient
for the nut-threading task due to small geometry. Different
phases of the task require motion at different scales. For
example, initial placement of the nut on the bolt requires
movement ranging from 0 — 2cm. However, lowering the
nut by the final thread changes the position by < lmm.
Instead, we propose a coarse-to-fine keypoint reward. The
final reward is a sum of: (1) A coarse reward directing the
arm towards the tip of the fixed part and; (2) a fine reward
incentivizing more detailed motion once the arm is close to



Initial State Randomization

Parameter All Tasks
Fixed: z,y, 2 0.55,0.65]m, [—0.05, 0.05]m, [0.0,0.1]m
Hand: z,y (rel) —2,2]em, [—2,2]em
Held: z,y (rel) —3, 3]mm, [0, 0]mm
Parameter 8mm Peg Medium Gear M16 Nut
Hand: z (rel) 3.7,5.7]cm 2.5,4.5]cm 0.5,2.5]cm
Hand: yaw —45,45]° —45,45]° —120, —90)°
Held: z (rel) 14, 20lmm 12, 15]mm 10, 16]mm
Observation Randomization
Parameter 8mm Peg Medium Gear M16 Nut
Pos-Est Noise 2.5mm 2.5mm 2.5mm
Force Noise 1N 1N 1N
EE-Pos. Noise 0.25mm 0.25mm 0.25mm
Dynamics Randomization
Parameter 8mm Peg Medium Gear M 16 Nut
Part Friction 0.5,1.0] 0.38,0.75] 0.1,0.38]
Controller Gains  [400, 800] 400, 800] 400, 800]
Action Scale: A [1.6,2.5]cm 1.6,2.5]cm 1.6,2.5]cm
Dead Zone 0,5|N 0,5|N 0,5]N
Force Threshold  [5, 10|V 5, 10| N 5, 10| N
Reward Specification
Parameter 8mm Peg Medium Gear M16 Nut
Coarse (a%,b¢)  (50,2) (50,2) (100, 2)
Fine: (af,bf) (100, 0) (100, 0) (500, 0)
Contact-Pen: 8 0.2 0.05 0.05
Success Dist. 24mm 19mm 2.5mm
Place Dist. 2.5mm 2mm 2.5mm
Episode Length 150 (10s) 300 (20s) 450 (30s)
TABLE I

SIMULATION PARAMETERS USED TO TRAIN FORGE POLICIES.

the part. These are implemented using different parameters
for the logistic kernel,

iTe e coarse ([ jk ine ¢ jk
Ry (pTie?, plel) = K522 (d) + KL (). (1)

Parameters for each task can be found in Table [I

B. Task Success

Each task defines success based on the relative positions
between the held and fixed parts (Table [[]shows Success Dist.
as the distance between the top of the fixed part and bottom
of the held part when success is achieved):

o Peg Insertion: The bottom of the peg is within 1mm of
the base of the socket (equivalently, 24mm below the
top of the socket).

e Gear Meshing: The bottom of the gear is within 1mm
of the base of the gear plate (equivalently, 19mm below
the tip of the gear peg).

e Nut Threading: The M16 nut is lowered a quarter thread
(corresponding to 2.5mm below the tip of the bolt, as
the first thread is chamfered).

For all tasks, success also requires the parts to be laterally
centered.

IV. PLANETARY GEARBOX

For the planetary gearbox, we trained policies for the
following tasks: Ring Insertion, Small Gear Meshing, Large
Gear Meshing, and M16 Nut Threading.

Gear Tasks: The small and large gear meshing tasks
had one abutting gear in simulation. This is similar to
deployment for the small gear which achieved a high success

Fig. 1.  Simulated assets for the ring insertion task. The ring gear (grey)
is inserted onto the gearbox plate (blue).

rate (15/15). However, when the large gear is deployed, it
needs to mesh with the three already inserted small gears.
This is much harder than how the policy was trained and
could be a cause of the performance drop for this task (3/5).

Ring Insertion: The outer ring gear must be inserted onto
the three bolts of the gearbox base. We designed simulation
assets for the corresponding parts (see Fig. [T) and trained
a policy using the FORGE framework. We assume there is
small orientation error on the ring (< 5°) during training.
Success is defined as having the ring gear placed close to
the gearbox base (< 2mm displacement) and all three bolt
holes aligned.

Gearbox Design: Note, we also designed a “lock” for the
gear carrier which is removed by the robot after the small
gears are inserted. This ensures a fixed base during the small
gear insertions (see video).

Policy Selection: The M16 policy was chosen as the best
policy from our main evaluation (FORGE No Force). All
other policies were trained using the FORGE framework
including force observations. We trained one policy per
task without any additional checkpoint selection procedure.
For the gearbox experiments only, we selected high control
stiffness for the roll and pitch dimensions of the impedance
controller, as the policy does not generate actions for these
degrees of freedom.

Task Execution: To pick up the held parts, we assume a
known grasp location which was predetermined (with small
noise from placement error). However, the location of the
corresponding fixed parts were estimated from the IndustReal
perception system [41]. Grasping and movement to the initial
state for policy execution was performed with a standard
position controller. No additional artificial noise or initial-
state randomization was added for the gearbox experiments.
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