We present FORGE, a method for sim-to-real transfer of force-aware manipulation policies in the presence of significant pose uncertainty. During simulation-based policy learning, FORGE combines a force threshold mechanism with a dynamics randomization scheme to enable robust transfer of the learned policies to the real robot. At deployment, FORGE policies, conditioned on a maximum allowable force, adaptively perform contact-rich tasks while avoiding aggressive and unsafe behaviour, regardless of the controller gains. Additionally, FORGE policies predict task success, enabling efficient termination and autonomous tuning of the force threshold. We show that FORGE can be used to learn a variety of robust contact-rich policies, including the forceful insertion of snap-fit connectors. We further demonstrate the multistage assembly of a planetary gear system, which requires success across three assembly tasks: nut threading, insertion, and gear meshing.
This research was sponsored in part by Army Research Labs under the A2I2 program and by NVIDIA. Their support is gratefully appreciated.